Human Action Recognition Using HDP by Integrating Motion and Location Information
نویسندگان
چکیده
The method based on local features has an advantage that the important local motion feature is represented as bag-of-features, but lacks the location information. Additionally, in order to employ an approach based on bag-of-features, language models represented by pLSA and LDA (Latent Dirichlet Allocation) have to be applied to. These are unsupervised learning, but they require the number of latent topics to be set manually. In this study, in order to perform the LDA without specifying the number of the latent topics, and also to deal with multiple words concurrently, we propose unsupervised Multiple Instances Hierarchical Dirichlet Process MI-HDP-LDA by employing the local information concurrently. The proposed method, unsupervised MI-HDP-LDA, was evaluated for Weizmann dataset. The average recognition rate by LDA as conventional method was 61.8% and by the proposed method it was 73.7%, resulting in 11.9 points improvement.
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملLearning to Learn with Compound HD Models
We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian models. Specifically we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a Deep Boltzmann Machine (DBM). This compound HDP-DBM model learns to learn novel concepts ...
متن کاملHuman Action Recognition in Videos Using Hybrid Motion Features
In this paper, we present hybrid motion features to promote action recognition in videos. The features are composed of two complementary components from different views of motion information. On one hand, the period feature is extracted to capture global motion in timedomain. On the other hand, the enhanced histograms of motion words (EHOM) are proposed to describe local motion information. Eac...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کامل